Auf Blatt Flensburg ist der südliche Teil der Halbinsel Jütland abgebildet. Während im Westen die Nordsee mit dem Nordfriesischen Wattenmeer, den Halligen und den Nordseeinseln Amrun, Föhr, Sylt und Rømø erfasst ist, wird am Ostrand der Karte die Ostseeküste mit Eckernförder und Flensburger Bucht sowie der dänischen Insel Als dargestellt. Im Kartenblatt sind neben den Oberflächensedimenten des Festlandes auch die Ablagerungen des rezenten Meeresbodens, des Hallig- und Strandbereichs sowie der Watt- und Marschgebiete erfasst und detailliert untergliedert. Auf die marin-litoralen Faziesbereiche entfallen allein 51 der insgesamt 85 Holozän-Einheiten der Legende. Auf dem Festland treten die holozänen Ablagerungen hinter den pleistozänen Sedimenten der Weichsel- und Saale-Kaltzeit zurück. Sie finden sich nur vereinzelt in den Flussniederungen und Senken (hauptsächlich Moorbildungen). Zu den glazialen Sedimenten, die den Festlandsbereich dominieren, zählen: Geschiebelehm der Grundmoränen, glazifluviatile Sande und Schotter, glazilimnische Beckenschluffe und Flugsande. Dabei lassen sich von Ost nach West Unterschiede in der Sedimentverteilung feststellen. Während im östlichen Teil Jütlands Geschiebelehm der weichselkaltzeitlichen Grundmoräne dominiert, werden im zentralen Teil weite Flächen von weichselkaltzeitlichen Sandern eingenommen. Im Westen Jütlands sind dann vermehrt auch Saale-kaltzeitliche Ablagerungen zu finden. Aufgrund der Geschlossenheit der quartären Deckschicht treten ältere Schichten des präquartären Untergrundes kaum zu Tage. Pliozäner Sand und miozäner Ton sind in regional eng begrenzten Vorkommen nur auf Sylt anstehend. Neben der Legende, die über Alter, Petrographie und Genese der dargestellten Einheiten informiert, gewähren drei Profilschnitte zusätzliche Einblicke in den geologischen Bau des Untergrundes. Das längste Profil beginnt am Nordzipfel der Insel Sylt und kreuzt in südöstliche Richtung die Halbinsel Jütland. Die beiden kürzeren Profilschnitte queren den westlichen Teil Jütlands von Nord nach Süd bzw. von Nordwest nach Südost. In allen drei Profilen wird die Mobilität der Zechstein-Salze im Untergrund deutlich - angeschnitten sind die Salzstöcke von Sieverstedt, Süderbrarup, Waabs-Nord und Süderstapel.
In den Jahren 1977 - 1983 wurden durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) auf dem damaligen Staatsgebiet der Bundesrepublik Deutschland in mehreren Probenahmekampagnen ca. 80.000 Wasser- und 70.000 Sedimentproben aus Bächen und Flüssen entnommen und geochemisch untersucht. Ziel der Untersuchungen war neben der geochemischen Prospektion lagerstättenhöffiger Bereiche auch die Erfassung von Hinweisen auf anthropogene Umweltbelastungen. Die Ergebnisse dieser Untersuchungen wurden im Geochemischen Atlas Bundesrepublik Deutschland (Fauth et al., 1985) veröffentlicht. Bei den im Rahmen des Geochemischen Atlas Bundesrepublik Deutschland 1985 erhobenen Daten handelt es sich um eine in ihrer hohen Probenahmedichte einzigartige flächendeckende geochemische Aufnahme des damaligen Staatsgebietes der Bundesrepublik Deutschland. Alle späteren geochemischen Untersuchungen wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten werden nun über die Geoportale der BGR allgemein verfügbar gemacht. Ergänzend zur digitalen Bereitstellung des originalen Datenmaterials, der Texte aus Fauth et al. (1985) sowie nach dem 1985 verwendeten Verfahren hergestellten Verteilungskarten erfolgte eine Neubearbeitung der Daten mit modernen Verfahren. Die Downloads zeigen die Verteilung der Urangehalte in Bachsedimenten in fünf verschiedenen farbigen Punkt- und Isoflächenkarten. Ergänzend sind den Downloads die in Fauth et al. (1985) enthaltenen kurzen Erläuterungen zum Element Uran beigefügt.
Blatt Bamberg bildet den nördlichen Teil der Süddeutschen Schichtstufenlandschaft ab. Die charakteristischen Schichtstufen entstanden durch Verwitterung und Abtragung der flach einfallenden mesozoischen Sedimentschichten (Muschelkalk bis Malm). Im Nordwesten werden sie vom Buntsandstein der Rhön, im Nordosten vom Fränkischen Schiefergebirges (Graptolithenschiefer/Silur; Tonschiefer, Sandsteine und Grauwacken/Unterkarbon; Sand- Schluff-, Tonsteine und rhyolithische Pyroklastika/Perm) begrenzt. Von Ost nach West lässt sich folgende Gesteinsabfolge festhalten: Die jurassischen Ablagerungen der Fränkischen Alb, denen z. T. Reste kreidezeitlicher Sandsteine auflagern, werden von Sedimenten der Trias abgelöst. Dem Keuper des Steigerwaldes bzw. der Hassberge schließen sich am Westrand des Kartenblattes Sedimente des Muschelkalks an. In den Niederungen und Senken werden diese Sedimente weitflächig von pleistozänem Löss überlagert. Westlich des Steigerwalds sind pleistozäne Flugsande und Umlagerungsbildungen wie Hangschutt und Fließerden weit verbreitet. Fluviatile Quartärsedimente lagern auf den breiten Flussterrassen des Mains. Im Nordteil der Karte, westlich von Coburg, fällt eine Schar basaltischer Vulkanite auf, die den Keuper-Sedimenten aufsitzen und ein Muster NNE-SSW-streichender Spalten bilden. Diese Heldburger Gangschar tertiärer Vulkanite reicht von den Hassbergen bis nach Thüringen. Eine rheinisch ausgerichtete Linie von Basaltaustritten findet sich auch westlich von Heiligenstadt, wo die jungen Vulkanite einen Kontrast zum Jura der Fränkischen Alb darstellen. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologischer Schnitt Einblicke in den Aufbau des Untergrundes. Das Profil schneidet in seinem West-Ost- bzw. Nordwest-Südost-Verlauf den Buntsandstein der Rhön, die Kissinger Bruchzone, die Muschelkalk- und Keuper-Ablagerungen des Maßbacher Sattels, die Hassberge mit der Hassberg-Störung, die Heldburger Gangschar und zieht sich über den Main bis zum Jura der Fränkischen Alb.
Durch die LABO wurden 2017 für 16 Elemente neue, bundesweite Hintergrundwerte veröffentlicht. Sie beruhen auf Profilinformationen und Messdaten von Königswasserauszügen, die durch die BGR zusammengeführt und homogenisiert wurden. Daten mit hohen Bestimmungsgrenzen wurden nach bestimmten Kriterien von der weiteren Auswertung ausgeschlossen, damit die Bestimmungsgrenzen nicht die Hintergrundwerte beeinflussen. Um die Hintergrundwerte nicht durch Regionen mit hoher Stichprobendichte überproportional beeinflussen zu lassen, wurde in Teilen eine räumliche Ausdünnung durchgeführt. Die Werte mehrerer Horizonte eines Standortes wurden durch tiefengewichtete Mittelwerte zu einem Wert zusammengezogen. Zur Auswertung wurden die vorhandenen Messwerte verschiedenen Gruppen von Bodenausgangsgesteinen zugeordnet. Zudem wurde unterschieden, ob die Proben im Oberboden, im Unterboden oder im Untergrund genommen wurden. Bei den Oberböden wurde bei der Auswertung auch die unterschiedliche Nutzung (Acker, Grünland, Forst) berücksichtigt. Lockergesteine wurden aufgrund ihrer unterschiedlichen Zusammensetzung getrennt nach Nord- und Süddeutschland ausgewertet. Durch die Aufteilung der Daten in Teilkollektive wurden nicht in allen Fällen verlässliche Fallzahlen erreicht, sodass nur Hintergrundwerte mit Fallzahlen ?20 dargestellt werden. Das genaue Vorgehen bei der Ableitung ist dem Bericht der LABO-Bund/Länder-Arbeitsgemeinschaft Bodenschutz (2017): 'Hintergrundwerte für anorganische und organische Stoffe in Böden', 4. überarbeitete und ergänzte Auflage, zu entnehmen.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: HGW1000_Pb V2.0, (c) BGR, Hannover, 2017
Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".
In der Karte werden die an der Oberfläche anstehenden Gesteine zunächst in die vier Haupttypen “Porengrundwasserleiter”, “kombinierte Poren- und Kluftgrundwasserleiter”, “Kluft- und Karstgrundwasserleiter” sowie “Grundwassergering- und Grundwassernichtleiter” unterteilt. Eine weitere Differenzierung erfolgt abhängig von der Ausdehnung und Produktivität gemäß der Systematik der Standardlegende für Hydrogeologische Karten (SLHyM). Die Einstufung in die Produktivitätsklassen wurde aus der Durchlässigkeit hergeleitet. Zusätzlich werden die an der Oberfläche anstehenden Gesteine in Form von Flächensignaturen in 19 verschiedene Gesteinsarten und vier geringmächtige Bedeckungen unterschieden. Weiterhin sind Versalzungszonen des oberflächennahen Grundwassers im Binnenland, Gebiete mit Meerwasser-Intrusionen im Küstenbereich sowie Bergbaugebiete dargestellt. Datengrundlage der Karte “Hydrogeologie” ist die von der BGR im Jahr 1993 herausgegebene digitale Geologische Karte der Bundesrepublik Deutschland 1:1.000.000 (GK1000). Die digitale GK1000 beinhaltet Attribute zur Stratigraphie, Lithologie und zur Genese der Gesteine.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: HY1000 (c) BGR Hannover 2019
Die BÜK1000N in der Version 2.31 stellt bundesweit die Verbreitung der Böden und deren Vergesellschaftung in einheitlicher Form auf dem Aggregierungsniveau der Leitbodenassoziationen und der generalisierten und angepassten Landnutzungsklassen aus CORINE Land Cover 1990 dar. Sie ist nicht wie die drei Teilauszüge Acker, Grünland und Wald als analoge Karte erschienen. Ergänzt wird die digitale Kartengrafik durch Klimagebiete, Bodenregionen und Bodengroßlandschaften. Die Gesamtlegende umfasst 69 bodenkundliche Legendeneinheiten (mit Angaben zu Gründigkeit, Bodenarten, Wasserverhältnissen, Ausgangsgestein, Leit- und Begleitböden), geordnet nach Bodenverbreitungsgebieten, Teillegenden Acker, Grünland und Wald: jeweils untergliedert nach Klimagebieten, (mit Angaben zu Ausgangsgestein, Leit- und Begleitböden). Die flächenbezogenen Inhaltsdaten setzen sich aus 76 Wald-Referenzprofilen mit je 3 auf Bodenformen und 23 auf Horizonte bezogene Parameter, 78 Acker-Referenzprofilen sowie 56 Grünland-Referenzprofilen mit je 3 auf Bodenformen und 16 auf Horizonte bezogenen Parametern zusammen und sind in einer relationalen Datenbank abgelegt. Ein zusätzliches, 54 Seiten umfassendes Begleitheft mit Erläuterungen zur BÜK1000N kann bei Bedarf über die GeoCenter Touristik Medienservice GmbH in 70565 Stuttgart bezogen werden. Zur Verbesserung der Lagegenauigkeit wurde der Datensatz der BÜK1000N am 22.02.2013 leicht überarbeitet.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: BÜK1000N V2.31, (C) BGR, Hannover, 2013.
The results of the 1978 SONNE survey by the Federal Institute for Geosciences and Natural Resources (BGR), in the Coral Sea indicated the presence of narrow rift valleys beneath the outer margins of the Queensland and Papuan Plateaus. On the margins of these valleys, features were observed which were then interpreted to be large fossil reefs underlying an Eocene/Oligocene unconformity. These conclusions were important because they indicated that the Coral Sea Basin region is ideal for research into the fundamental problems concerning the development of continental margins. That is, the region offers similar problems to areas of the world where detailed studies are currently being conducted (e.g. West African margin) but with less complicated superimposed structure and a much thinner sediment cover. During the period from 29th November 1980 to 9th January 1981 a 'follow up' survey on the first and second leg of cruise SO-16 using the R/V SONNE was carried out in the northern Coral Sea, around the margins of the Coral Sea Basin, by the BGR in co-operation with the Bureau of Mineral Resources, Geology and Geophysics, Canberra (BMR) and the Geological Survey of Papua New Guinea, Port Moresby (GSPNG). The survey, which was divided into a geophysical cruise (first leg of SO-16) and a geological sampling cruise (second leg of SO-16), resulted in the recording of about 7,140 km of bathymetric and gravimetric data, of about 6,950 km of magnetic data, 3,150 km of digital multichannel seismic reflection profiles, 3,560 km of analogue single channel seismic reflection profiles, 10 sonobuoy refraction profiles and the sampling of 16 stations by dredging and 9 by coring. In the period from 9th January to 6th February 1981, geophysical investigations on the 3rd leg of SONNE cruise SO-16 were carried out in the Arafura Sea between Tanimbar, Aru and Kai Islands, and in the southern part of the Makassar Strait by BGR in co-operation with the Geological Research and Development Centre, Dept. Mines and Energy of Indonesia, Bandung and the Indonesian lnstitute of Sciences (LIPI), Bandung. 4,060 km of bathymetric and gravity lines, 3,080 km of magnetic lines, 1,415 km of reflection seismic lines (digital and analogue), and 9 sonobuoy profiles were recorded during this leg. Objectives of the Arafura Sea survey were determination of (a) thickness, seismic pattern, tectonic style and subsidence of the Cenozoic/Mesozoic depositional sequences at the transition from the Australian continental shelf to the Tanimbar outer arc ridge and (b) the configuration of the Precambrian rocks of the above mentioned transition zone. Objectives of the Makassar Strait survey were determination of (a) the nature and configuration of the acoustic basement underlying the South Makassar Basin, (b) the formation and nature of the sediments overlying the acoustic basement, (c) the regional distribution of a major unconformity of assumed Middle Miocene age as observed on profile VA16-24 of the VALDIVIA cruise VA-16 in 1977 in order to get a better understanding of the development of the South Makassar Basin.
Allgemeine Geschäftsbedingungen, siehe http://www.bgr.bund.de/AGB - General terms and conditions, see http://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: SO16 1981, (c) BGR, Hannover, 2019
The previous BGR-cruises with RV AURELIA in 2003 and 2004 were designed to collect a grid of seismic MCS-data which should enable us to get a high-resolution overview over the upper 1 s TWT of the sediments of the German North Sea sector. The data format is Society of Exploration Geophysicists SEG Y. Together with the previously acquired data these new data should help to extend our knowledge of the Late Tertiary and Quaternary evolution of the German North Sea Sector. For the current measurements under the scope of the DFG-funded project RE2424/1-1 ‚Nordsee’ the research vessel RV HEINCKE was made available by the ‘Senatskommission für Ozeanographie’ of the DFG. During the cruise a total ca. 1400 km of high quality MCS lines were surveyed and simultaneously measured by a sediment echosounder system that enabled additional profiles during transits with speeds > 5 kn. The BGR high-resolution multichannel seismic reflection system consisting of a GI-Gun (0.8 l) and a 300 m streamer with 24 channels and a sediment echosounder type SES 2000 standard by Innomar, Rostock. While the BGR-seismic system was used to observe the shallow subsurface down to 2 s TWT penetration depth, the sediment echosounder with a penetration depth of several meters was primarily intended to identify sampling positions for the deployment of the BGR vibration corer during the succeeding Leg 2. Additionally, the echosounder system enables the relationship to the highest-resolution multichannel seismic measurements of the group of the University of Bremen on FK SENCKENBERG. All seismic records were processed onboard for the quality control and for a first interpretation.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: HE242, (c) BGR, Hannover, 2005
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.