Digitales CIR Orthofotomosaik - Kachel 4_03. Aufgenommen mit dem Kamerasystem DMC während der Befliegung des Niedersächsischen Wattenmeeres 2003. Datentiefe 16-bit, Bodenpixelauflösung 32cm. Referenzsystem Gauss-Krüger Zone 3. Digital colour infrared orthoimage mosaic - tile 4_03, recorded during the aerial flight 2003. Colour depth 16-bit, ground resolution 32cm. Reference system Gauss-Krüger zone 3.
Im Rahmen eines langfristigen Programms werden im ostfriesischen Watt südlich von Norderney die Bestandsschwankungen des Makrozoobenthos untersucht. Nach einem vorangegangenen Bericht über die dominanten Arten (DÖRJES et al. 1986) werden hier die Fluktuationen der non-dominanten Arten in der Zeit von 1976 bis 1985 dargestellt. An vier Dauerstationen im geschützt gelegenen Sandwatt verschiedener Höhenlagen wurden regelmäßig Proben von Sediment und Bodenfauna entnommen. Die Artengemeinschaft gehört als „Wattvariante" der Macoma balthica-Gemeinschaft an und umfasst, einige unbestimmte Nemertinen nicht mitgerechnet, 35 Arten. Die Anneliden stellen davon als stärkste Gruppe 18 Arten, gefolgt von 9 Mollusken, 7 Crustaceen und einer Insektenart. Neben einem Grundstock aus sechs bis acht dominanten Arten, die 80 bis 90% zur gesamten Abundanz und Biomasse beitragen (DÖRJES et al. 1986), stellt eine Gruppe von weiteren zwölf mehr oder weniger regelmäßig vorkommenden non-dominanten Arten die restlichen 10 bis 20%. Ihre jahreszeitlich bedingten Bestandsschwankungen werden zusätzlich durch singuläre Ereignisse wie Frostperioden und Stürme besonders beeinflusst. Grundsätzliche Strukturveränderungen machen sich im Zeitraum von zehn Jahren noch wenig bemerkbar. Im Falle einiger Arten deutet sich eine Zunahme der Populationsdichten an.
„Der vorliegende Bericht gibt einen Überblick über die Vegetationsentwicklung der Leybucht von 1948 bis 1996 vor dem Hintergrund bereits durchgeführter oder noch geplanter Baumaßnahmen und Nutzungsänderungen im Gebiet. Dazu erfolgte 1995/96 eine flächendeckende Vegetationskartierung der Leybucht im Maßstab 1:2.500. Die Daten wurden oben genannten früheren Erhebungen gegenübergestellt. Die Erstellungg der Vegetationskarte wurde mit Hilfe des Geographischen Informationssytems (GIS) durchgeführt. Für die Bewertung der Vegetationsentwicklung ist es erforderlich, die wesentlichen Randbedingungen zu kennen und einzubeziehen. Da Hydrologie, Morphologie, Nutzung usw. in den letzten Jahrzehnten erheblichen natürlichen und anthropogenen Veränderungen unterlagen wird in Kapitel 2 zunächst etwas ausführlicher auf diese Entwicklung im Untersuchungsgebiet eingegangen. […]“
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
Der Datensatz umfasst Nachweisdaten von in der ausschließlichen Wirtschaftszone Deutschlands gewonnenen Sediment- und Gesteinsproben inklusive Bohrkerne, die in den Archiven der Bundesanstalt für Geowissenschaften und Rohstoffe gelagert werden und vom Geologiedatengesetz betroffen sind.
Compilation of the European Pre-Quaternary marine geology (section of Germany). Project partners are the national geological services of the participating countries. The map consists of data at highest available spatial resolution, map scale („multi-resolution“-concept) and data completeness vary depending on the project partner (as of 2016 September). According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of the geological map is stored in a INSPIRE-compliant GML file: EMODnet-DE_Pre-Quaternary_GeologicUnit.gml contains the geologic units. The GML files together with a Readme.txt file are provided in ZIP format (EMODnet-DE_Pre-Quaternary-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
Compilation of the European Quaternary marine geology (section of Germany). The original map consists of data at highest available spatial resolution, map scale („multi-resolution“-concept) and data completeness vary depending on the project partner (as of 2019 April). Project partners are the national geological services of the participating countries. According to the Data Specification on Geology (D2.8.II.4_v3.0) the geological map (section of Germany) provides INSPIRE-compliant data. The WMS EMODnet-DE Quaternary (INSPIRE) contains layers of the geologic units (GE.GeologicUnit) displayed correspondingly to the INSPIRE portrayal rules. The geologic units are represented graphically by stratigraphy (GE.GeologicUnit.AgeOfRocks) and lithology (GE.GeologicUnit.Lithology). The portrayal of the lithology is defined by the first named rock. Via the getFeatureInfo request the user obtains detailed information on the lithology, stratigraphy (age) and genesis (event environment and event process).
Die vielfältige Geologie Deutschlands sowie die sich hieraus ergebende Nutzung sind Ursachen für verschiedenste Bodenbewegungen, wie z.B. Bodenkompaktion, Erdrutsche, Grundwasserentnahme, Erdgasförderung, (Alt-)Bergbau- und Kavernenspeicherbetrieb. Die Produkte des BodenBewegungsdienst Deutschland (BBD) basieren auf SAR Daten der Copernicus Sentinel-1 Mission und einer Persistent Scatterer Interferometrie (PSI) Verarbeitung. Das BBD Portal enthält PSI Daten der gesamten Bundesrepublik Deutschland (ca. 360.000 km²). Die PSI Technologie ermöglicht präzise Messungen von Bewegungen der Erdoberfläche im mm Bereich. Die Messpunkte (Persistent Scatterer, PS) entsprechen bereits am Boden vorhandenen Objekten, wie z.B. Gebäuden, Infrastruktur oder natürlichen Objekten, wie Gesteinen und Schuttflächen. Jeder PS wird durch einen über mehrere Jahre gemittelten Geschwindigkeitswert (ausgedrückt in mm/Jahr) und eine Zeitreihe der Verschiebungen charakterisiert. Für jeden PS kann die Zeitreihe der Verschiebungen von der ersten Sentinel-1 Aufnahme bis zur letzten ausgewerteten Sentinel-1 Aufnahme eingesehen werden. Die PS werden nach der mittleren Geschwindigkeit entlang der Sichtlinie der Sentinel-1 Satelliten, Line of Sight (LOS), gemäß der folgenden Konvention im BBD Portal visualisiert: - die grüne Farbe entspricht den PS, deren mittlere Geschwindigkeit sehr gering ist, zwischen -2,0 und +2,0 mm/Jahr, d.h. im Empfindlichkeitsbereich der PSI Technologie; - in den Farben von gelb bis rot werden diejenigen PS mit negativer Bewegungsrate visualisiert, d.h. Bewegungen vom Satelliten weg; - mit den Farben von türkis bis blau werden diejenigen PS mit positiver Bewegungsrate visualisiert, d.h. PS die sich dem Satelliten nähern. Die Präzision der dargestellten PSI Daten liegt in der Größenordnung von typischerweise +- 2 mm/Jahr für die mittlere Geschwindigkeit in LOS.
Dieser Datensatz wurde im Rahmen des BGR-Projektes "D-AERO-Auswertung" aus den verschiedenen Gebieten an der deutschen Nordseeküste zusammengestellt. Der BGR-Messhubschrauber (Sikorsky S-76B) wird zur aerogeophysikalischen Erkundung des Erduntergrundes eingesetzt. Das Standardmesssystem umfasst die Methoden Elektromagnetik, Magnetik und Radiometrie. Das passive Radiometriemesssystem (HRD) ist im Messhubschrauber eingebaut und besteht aus einem Gammastrahlenspektrometer mit fünf Natriumiodid-Detektoren zur Erfassung der Gammastrahlung. Die Ergebnisse werden als Karten der Totalstrahlung, Ionendosisleistung sowie (Äquivalent-)Gehalte von Kalium, Thorium und Uran am Boden dargestellt.